无锡冠亚制冷加热控温系统的典型应用:
高压反应釜冷热源动态恒温控制、
双层玻璃反应釜冷热源动态恒温控制、
双层反应釜冷热源动态恒温控制、
微通道反应器冷热源恒温控制;
小型恒温控制系统、
蒸馏系统控温、
材料低温高温老化测试、
组合化学冷源热源恒温控制、
半导体设备冷却加热、
真空室制冷加热恒温控制。
型号 | SUNDI-320 | SUNDI-420W | SUNDI-430W | |
---|---|---|---|---|
介质温度范围 | -30℃~180℃ | -40℃~180℃ | -40℃~200℃ | |
控制系统 | 前馈PID ,无模型自建树算法,PLC控制器 | |||
温控模式选择 | 物料温度控制与设备出口温度控制模式 可自由选择 | |||
温差控制 | 设备出口温度与反应物料温度的温差可控制、可设定 | |||
程序编辑 | 可编制5条程序,每条程序可编制40段步骤 | |||
通信协议 | MODBUS RTU 协议 RS 485接口 | |||
物料温度反馈 | PT100 | |||
温度反馈 | 设备进口温度、设备出口温度、反应器物料温度(外接温度传感器)三点温度 | |||
导热介质温控精度 | ±0.5℃ | |||
反应物料温控精度 | ±1℃ | |||
加热功率 | 2KW | 2KW | 3KW | |
制冷能力 | 180℃ | 1.5kW | 1.8kW | 3kW |
50℃ | 1.5kW | 1.8kW | 3kW | |
0℃ | 1.5kW | 1.8kW | 3kW | |
-5℃ | 0.9kW | 1.2kW | 2kW | |
-20℃ | 0.6kW | 1kW | 1.5kW | |
-35℃ | 0.3kW | 0.5kW | ||
循环泵流量、压力 | max10L/min 0.8bar |
max10L/min 0.8bar |
max20L/min 2bar |
|
压缩机 | 海立/泰康/思科普 | |||
膨胀阀 | 丹佛斯/艾默生热力膨胀阀 | |||
蒸发器 | 丹佛斯/高力板式换热器 | |||
操作面板 | 7英寸彩色触摸屏,温度曲线显示、记录 | |||
安全防护 | 具有自我诊断功能;冷冻机过载保护;高压压力开关,过载继电器、热保护装置等多种安全保障功能。 | |||
密闭循环系统 | 整个系统为全密闭系统,高温时不会有油雾、低温不吸收空气中水份,系统在运行中不会因为高温使压力上升,低温自动补充导热介质。 | |||
制冷剂 | R-404A/R507C | |||
接口尺寸 | G1/2 | G1/2 | G1/2 | |
水冷型 W 温度 20度 |
450L/H 1.5bar~4bar G3/8 |
550L/H 1.5bar~4bar G3/8 |
||
外型尺寸 cm | 45*65*87 | 45*65*87 | 45*65*120 | |
正压防爆尺寸 | 70*75*121.5 | 70*75*121.5 | ||
标配重量 | 55kg | 55kg | 85kg | |
电源 | AC 220V 50HZ 2.9kW(max) | AC 220V 50HZ 3.3kW(max) | AC380V 50HZ 4.5kW(max) | |
外壳材质 | SUS 304 | SUS 304 | SUS 304 | |
选配 | 正压防爆 后缀加PEX | |||
选配 | 可选配以太网接口,配置电脑操作软件 | |||
选配 | 选配外置触摸屏控制器,通信线距离10M | |||
选配电源 | 100V 50HZ单相,110V 60HZ 单相,230V 60HZ 单相, 220V 60HZ 三相,440V~460V 60HZ 三相 |
低温有机合成反应的温度控制 加热制冷油浴
低温有机合成反应的温度控制 加热制冷油浴
精馏提纯深冷加热装置是一种在化工、制药、食品等多个领域中广泛应用的设备,主要用于通过精馏过程实现混合物的分离和提纯,同时结合深冷和加热技术,以提高产品的纯度和质量。
一、准备工作
在使用精馏提纯深冷加热装置之前,需要进行充分的准备工作,确保设备及其周围环境符合运行要求。
1、环境检查:确认设备周围的环境温度、湿度、压力等是否符合设备运行的要求。
2、设备检查:检查设备的电源、水源、气源等是否正常供应,并确保设备接地良好。检查设备的各个部件是否有异常,如损坏、松动或泄漏等。
3、参数设定:根据生产要求,设定设备的运行参数,如温度、压力、液位等。
二、操作步骤
1、启动设备:按照规定的操作流程启动设备。先启动冷却系统,确保冷却水流量和温度适宜,以保证冷凝器正常工作。随后,启动加热系统,控制加热器的温度和加热速率,避免设备过热或温度波动过大。
2、精馏过程:启动精馏过程,控制好设备的温度、压力、液位等参数。混合物在精馏塔内升温,使其中一种物质熔化后从塔中排出。随后,混合物降温,使其他物质在温度逐渐下降的过程中开始熔化,从而实现混合物的分离。在此过程中,可以根据需要调整压力和温度的组合,以获得更准确的物质分离效果。